Unavoidable set of face types for planar maps

نویسندگان

  • Mirko Hornák
  • Stanislav Jendrol
چکیده

The type of a face f of a planar map is a sequence of degrees of vertices of f as they are encountered when traversing the boundary of f . A set T of face types is found such that in any normal planar map there is a face with type from T . The set T has four infinite series of types as, in a certain sense, the minimum possible number. An analogous result is applied to obtain new upper bounds for the cyclic chromatic number of 3-connected planar maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted rooted non-separable planar maps

Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps have connections, for example, to pattern-avoiding permutations, and they are in one-to-one correspondence with the β(1, 0)-trees introduced by Cori, Jacquard and Schaeffer in 1997. In this paper we enumerate 2-face-free rooted non-separable planar maps and obtain restrict...

متن کامل

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

Scaling Limits of Random Planar Maps with a Unique Large Face

We study random bipartite planar maps defined by assigning non-negative weights to each face of a map. We proof that for certain choices of weights a unique large face, having degree proportional to the total number of edges in the maps, appears when the maps are large. It is furthermore shown that as the number of edges n of the planar maps goes to infinity, the profile of distances to a marke...

متن کامل

A bijection between planar constellations and some colored Lagrangian trees

Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, . . . ) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer [9] who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper...

متن کامل

Scaling Limits of Random Planar Maps with a Unique Large Face1 by Svante Janson

We study random bipartite planar maps defined by assigning nonnegative weights to each face of a map. We prove that for certain choices of weights a unique large face, having degree proportional to the total number of edges in the maps, appears when the maps are large. It is furthermore shown that as the number of edges n of the planar maps goes to infinity, the profile of distances to a marked...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1996